
An Integrated Blueprint from Kong and Apollo

+

Leveraging GraphQL for
Next-Generation API
Platforms

KongHQ.com

Leveraging GraphQL for Next-Generation API Platforms

© Kong Inc. 2

Introduction
API Management for Modern Microservices
GraphQL Abstracts API Complexity for Client Teams
Key Pillars of a Modern API Platform with GraphQL
 API Gateways for Managing Connectivity at the Edge and Between Applications
 A Supergraph Provides a Service Access Layer for Client Teams
 Service Mesh for Managing the Microservice Layer
Reference Architecture for a Modern API Platform
 Build, Deploy, and Operate APIs with a Modern API Platform
 API Gateway
 Supergraph Developer Tooling and CI/CD Pipelines with Policy Controls
 Microservices Management with Service Mesh
 The API Request Lifecycle
 Kong API Gateway
 Service Routing
 Authentication / Authorization
	 	 	 Traffic	Management
 Observability
 Request Forwarding
 Supergraph Runtime Execution
 GraphQL Query Parsing & Validation Against the Public API Schema
 Graph-Native Security and Performance Policy Enforcement
 Intelligent Query Planning
 Query Execution and API-Side Joins
 Supergraph Observability
 Supergraph Runtime Extensibility
 Domain-Driven Microservices
 API Gateway at the Mesh Edge
 Service Discovery / Inter-Service Connectivity
 Zero-Trust Security
	 	 	 Traffic	Management	and	Observability
A Modern API Platform
 Kong Konnect
 Apollo GraphOS
 Conclusion

Content
3
4
6
9
9

10
13
15
16
16
18
19
20
20
20
21
21
21
21
22
22
22
22
23
24
24
24
24
24
24
25
26
26
28
29

Leveraging GraphQL for Next-Generation API Platforms

© Kong Inc. 3

Introduction

Understanding and navigating this complex
API landscape is not a trivial task as the pace
of technological advancement continues to
accelerate. New digital initiatives such as
personalization, connected devices, and AI fuel
this trend even further. Organizations pursue
these initiatives to drive revenue and reduce
costs, but execution is paramount. In order to
deliver on these initiatives, technology leaders
must consider the following:

1. Data that exists across hundreds or

thousands of APIs must be delivered across
any number of user interfaces across an
organization.

2. API teams should be able to design,
construct, test, deploy, and iterate APIs
efficiently as demand requires.

3. Client teams must be able to consume these
APIs in a self-service fashion.

The API ecosystem often positions REST and
GraphQL as competing technologies, but they
are highly complementary and are instrumental
in developing a modern API platform that
accomplishes the goals above.

In this paper, we will offer an outline of the entire
process — from streamlining the developer’s
experience in building APIs to ensuring secure,
efficient runtime connectivity to implementing
robust governance mechanisms.

Through a balanced exploration of Kong's
perspective on flexible, heterogeneous API
ecosystems and Apollo's expertise in GraphQL,
this paper offers a broad view of modern
API platforms. Illustrated with real-world
architectures and practical insights, you will gain
insights into API management in this digital era.

Gartner projects over 200 billion APIs in use by the end of 2023, reflecting their central role
in the creation, operation, and utilization of innovative and secure digital experiences. As
digital economies grow, APIs have become critical to every modern application, underpinning
communication, integration, and reuse of microservices and data.

Leveraging GraphQL for Next-Generation API Platforms

© Kong Inc. 4

APIs are a critical component of these
architectures. Recognizing the criticality of APIs,
organizations are mobilizing to support their
DevOps teams more effectively, giving rise to a
new generation of API platform teams. These
teams focus on enabling the efficient design,
construction, testing, deployment, and operation
of APIs in a modern, containerized world.

However, these advances come with challenges.
Approximately 50% of enterprise APIs remain
unmanaged, posing security threats and
decreasing developer efficiency. APIs, available
in a variety of technologies and operating across
different environments, add to operational and
governance complexity. Each API represents
a potential attack vector, making API security
management a critical requirement for any
organization.

The crucial role of APIs in business operations
and mission-critical services further underscores
the need for performance, scale, and availability.
According to a recent Gartner study, 81%
of organizations stated that an hour of
downtime costs over $300,000, highlighting the
significance of API availability.

Addressing these challenges calls for a
comprehensive API platform strategy that
balances two sets of requirements that are
seemingly at odds: security and governance
and flexibility and developer productivity. This
requires a frictionless, automated approach
to building and running APIs that ensures
security, discoverability, and availability. The
strategy should support multiple points of API
connectivity — at the edge and within application
boundaries — securely and robustly. Finally, it
necessitates an effective governance model that
works in tandem with the platform’s build-and-
run capabilities, reducing developer friction and
maximizing API delivery capabilities.

The entire application stack is experiencing fundamental changes, particularly due to the advent of
containerization. This shift requires efficient management of microservices and promotes a fully
automated DevOps model. Consequently, organizations are better positioned to not only develop, run,
and govern new applications and services at scale but also transition legacy applications to modern
microservices-based architectures.

API Management for Modern Microservices

Leveraging GraphQL for Next-Generation API Platforms

© Kong Inc. 5

API platform teams must secure, iterate, and monitor APIs, but how can technical leaders unlock
developer velocity for client teams by making APIs easier to consume? The next sections of
this document outline how GraphQL unlocks this developer velocity, provides best practices for
incorporating it into a modern API platform, and presents a reference architecture laying out a path
to a secure and efficient modern API organization.

Leveraging GraphQL for Next-Generation API Platforms

© Kong Inc. 6

Mitigating the complexity of REST APIs is
a relatively straightforward task for smaller
engineering teams, but it can stifle innovation
at an enterprise scale. Engineering teams must
ensure that services that live across hundreds
of internal and external APIs can be easily
understood and consumed by any number of
web, mobile, and IoT clients.

This is not just a technical problem — it is
a people problem, as these teams often
work in disparate business units, in different
geographies, and at different cadences.

Point-to-point connections between clients and
underlying APIs present the following challenges:

No single source of truth
for the data to fetch

Decreased developer
productivity

Performance issues due
to over-fetching or
under-fetching

Relying on disparate client teams to consume and
orchestrate across multiple REST interfaces (using
frontend business logic) introduces inconsistencies
across	applications	without	significant	coordination.	
Change management becomes unruly as more and more
clients are introduced.

REST	API	endpoints	are	fixed,	forcing	client	developers	
to alter requests to prevent breaking changes across
applications.	They	cannot	iterate	on	features	without	first	
understanding the correct paths to use for queries. It is
not always clear what teams manage which APIs, and
when they have breaking changes.

When clients have to make multiple sequential network
calls across multiple services, it introduces excessive
latency. This is particularly painful for mobile apps on
slower connections. The cost of maintaining a separate
endpoint with exactly the right data for each component
becomes untenable as the needs of clients change.

API lifecycle management tools ensure that backend services are secure, reliable, and can be
effectively managed in one place. But how can technical leaders effectively ensure that client teams
can efficiently consume data that lives across dozens of APIs in a self-service fashion? And how
should API teams that practice domain-driven design (DDD) promote composability and reuse for
entities that exist across domains?

GraphQL Abstracts API Complexity for
Client Teams

Leveraging GraphQL for Next-Generation API Platforms

© Kong Inc. 7

Rather than relying on point-to-point connections
between frontends and backends, many
organizations began to build backend-for-
frontend (BFF) services to abstract this
complexity for frontend teams. The BFF pattern
simplifies data fetching for client teams, but it
does not come without costs. With more and
more decoupled architectures, many enterprises
have hundreds of BFFs. Each backend-for-
frontend presents redundant data fetching code
and business logic. In this respect, BFFs have
become a necessary evil for many — a new part
of the stack that must be built, maintained, and
staffed.

GraphQL presents a breakthrough for eliminating
hand-crafted BFFs. It enables an API team to
define a domain in a much more composable
and reusable way. All of the data that defines
a business domain is codified in a centralized

GraphQL schema on a server. This acts as a
“menu” of all of the data available to clients and
describes the data’s shape. Service developers
can define different types of nodes and how they
connect/relate to one another. GraphQL resolvers
connect GraphQL fields, graph edges, queries,
mutations, and subscriptions to their respective
data sources and microservices. Client teams
can then access this data using a declarative
query language and a single GraphQL endpoint
that sits on top of the underlying domain APIs.

Leveraging GraphQL for Next-Generation API Platforms

© Kong Inc. 8

The internet is rife with “GraphQL vs. REST”
debates, but it is not an either/or scenario. The
GraphQL Schema Definition Language (SDL) can
define disparate concepts from data that lives
across a variety of services, including REST,
gRPC, and even SOAP APIs. GraphQL servers can
simplify fetching data from underlying APIs and
help handle caching, request deduplication, and
errors while resolving operations.

Apps can fetch all the data they need in a single
GraphQL query, without waiting on BFF teams
to implement a hand-crafted experience API.
Multiple apps can share a common GraphQL API
contract to reduce duplicate effort and improve
consistency in the customer experience.

Leveraging GraphQL for Next-Generation API Platforms

© Kong Inc. 9

With the core requirements and technologies above, we can now outline how these technologies fit
together within a modern API platform. There are three fundamental pillars: API gateways, GraphQL
Federation, and a microservices layer.

Key Pillars of a Modern API Platform
with GraphQL

The first pillar, the API gateway, provides the critical function of mediator between API consumers
and providers. API gateways are deployed in multiple locations through the architecture. First, an API
gateway is positioned at the infrastructure’s edge, negotiating traffic between front-end API requests
and backend services. Additionally, API gateways are placed within the infrastructure to mediate
traffic between application boundaries.

The gateways do much more than just this:
they provide a critical layer of isolation for
services, enforce security, and manage traffic
flow. The gateway’s position in the architecture
necessitates high performance for large-scale
traffic handling.

Modern gateways must support next-generation
protocols like GraphQL, gRPC, and Kafka while
coexisting with existing services that utilize
REST or lower-level protocols. Even further,
API gateways must support a broad set of
requirements across key aspects such as security,
traffic	management,	and	system	observability.		

API Gateways for Managing Connectivity at the Edge and Between
Applications

Leveraging GraphQL for Next-Generation API Platforms

© Kong Inc. 10

Companies like Netflix use GraphQL Federation
as a better way to scale GraphQL. This
architecture provides the simplicity of the
monolith for client teams but the modularity
of a more decoupled approach for service
teams. In a federated graph, individual GraphQL
APIs are maintained by separate teams on
separate servers and can be written in a variety
of subgraph frameworks, so each team can
use their language of choice. These individual

subgraphs sit behind a single API router that
serves as an access point for clients. A process
called composition takes all subgraph schemas
and intelligently combines them into one
schema, ensuring a consistent and performant
runtime This defines a supergraph architecture —
a graph of graphs — and enables service teams
to support more clients with greater consistency
and less redundant work.

A Supergraph Provides a Service Access Layer for Client Teams
GraphQL provides a standardized schema definition and query language to access all the data and
services in an organization — a layer on top of your existing APIs. When a monolithic GraphQL server
is used to replace one or multiple BFFs, it can quickly grow in size. This monolithic GraphQL API
can quickly become a bottleneck that is untenable for one team to manage. Other teams that want
to contribute to the graph are forced to use the language and framework picked for the GraphQL
monolith. And as the graph increases in size and complexity, there is no clean separation of
concerns for ownership. So how do you use GraphQL at scale?

Diverse and evolving security standards are
difficult to implement at the service layers. The
API gateway provides a flexible, unified, and
consistent security layer for all the services.
Traffic management techniques, like rate
limiting, can provide basic service availability
protection but also enable direct business value
features like customer tiering.

Gateways must provide API observability for
real-time performance tracking and enable
seamless day-2 operations with features like
zero-downtime upgrades, auto-scaling, and self-
healing capabilities. Engineering teams need
gateways to operate across a wide range of
compute infrastructure, from virtual machines to
Kubernetes and other containerized platforms.
Modern teams require end-to-end automation
capabilities and flexible governance models.

https://netflixtechblog.com/how-netflix-scales-its-api-with-graphql-federation-part-1-ae3557c187e2

Leveraging GraphQL for Next-Generation API Platforms

© Kong Inc. 11

A supergraph should continuously evolve to
meet the needs of the business. Automation
and tooling are key to evolving a graph without
introducing breaking changes. Teams publish
subgraph schemas to a schema registry as
subgraphs are deployed and become available
for use. The registry provides a source of truth
for a supergraph continuous integration (CI) build
that composes subgraphs, checks linting rules,
and assesses the impact of potentially breaking
changes using observed traffic.

When a supergraph build completes, the
composed supergraph schema is continuously
deployed to a fleet of supergraph routers, so
applications can immediately query and use new
fields and types.

Beyond distributed schema ownership, a self-service API platform requires that security and
performance policies also be owned in a modular fashion. Teams can define policies along with
their schema and code changes to streamline development and reduce errors associated with
multi-team handoffs.

Leveraging GraphQL for Next-Generation API Platforms

© Kong Inc. 12

These graph-native policies are declaratively
composed and validated by the supergraph CI build
pipeline and delivered to the supergraph router
which enforces the policies at runtime, at the edge
of your graph. Enabling teams to own their slice
of the graph, including security and performance
policies, is key to achieving developer self-service.

In summary, a supergraph provides the self-service
experience of GraphQL at scale:

1. A scalable architecture: A supergraph should
provide modularity for service teams and an
intuitive experience for client teams. It should
perform all of the orchestration required to
deliver GraphQL at scale.

2. Reliable and secure infrastructure: API teams
should be able to maintain, secure, scale,
and observe the graph. Organizations must
consider the unique requirements around
performance and in particular caching and
deduplication, as well as graph-native security
including schema-driven authorization,
operation safelisting, query depth and cost
limits,	quotas,	rate	limiting,	and	traffic	shaping.

3. Standardized workflows: Teams should
be able to collaborate on their portion of
the graph for optimal developer experience
and composability. The supergraph CI/CD
(continuous integration/continuous delivery)
build should be automated using a schema
registry as a source of truth. Organizational
best practices should be ensured with static
analysis and linting rules. Breaking changes
should be prevented using schema and
operation checks against observed runtime
traffic	for	smooth	operation	in	production	
environments.

Leveraging GraphQL for Next-Generation API Platforms

© Kong Inc. 13

At the foundation of the architecture is the microservices layer, where services are managed by
autonomous teams following domain-driven design principles. These services are the data access
layer, delivering the essential business functionality to clients, including end-user applications,
GraphQL subgraphs, or other domain services. Services may provide their functionality using a
variety of technologies including REST, gRPC, and proprietary protocols.

Modern engineering teams are turning to service
meshes to manage the microservices layer. A
service mesh offers a dedicated network layer
that provides automated service discovery, load
balancing, automatic retrying, circuit breaking,
and failure recovery. Combined, these functions
improve availability and responsiveness even
in the face of network failures or service
disruptions. Service meshes also provide
advanced capabilities such as A/B testing,
canary releases, and rate limiting.

Security is another critical advantage of
a service mesh. It enables consistent and
centralized security policies to be applied
across all communication channels. Features
like mutual TLS (mutual transport layer security
or mTLS) authentication, authorization, and
encryption can be readily implemented and
enforced. This safeguards sensitive data and
aids in preventing unauthorized access and
potential breaches. Modern service meshes
enable secure communication across the full
distributed environment by adhering to zero-
trust security principles.

Observability, which involves understanding
the behavior of applications, is significantly
improved through a service mesh. Features
like distributed tracing, metrics collection, and
logging provide valuable insights into the flow of
requests and responses within the application.
This facilitates quicker identification and
resolution of performance bottlenecks or errors,
leading to enhanced overall system performance.

Inter-domain traffic is managed by an API
gateway, allowing the same principles applied at
the networking edge to mediate traffic between
application boundaries.

Service Mesh for Managing the Microservice Layer

Leveraging GraphQL for Next-Generation API Platforms

© Kong Inc. 14

In	summary,	a	service	mesh	offers	multiple	benefits	that	enhance	application	reliability,	security,	and	
observability. It abstracts communication complexities, bolsters security, and provides deep insights
into service behaviors. Moreover, its adaptability to diverse technological ecosystems ensures that
organizations can build and manage resilient and secure distributed applications effectively.

Leveraging GraphQL for Next-Generation API Platforms

© Kong Inc. 15

Kong provides an API gateway (Kong Gateway),
service mesh (Kong Mesh), and multi-cloud
API management (Kong Konnect) for the
microservices in your organization. You can
preserve existing investments and workflows for
your domain APIs and enhance them by weaving
a GraphQL layer into your existing architecture.
Apollo provides a GraphQL developer platform
(GraphOS), which includes developer tooling, a
schema registry, and a supergraph CI/CD pipeline
and high-performance supergraph runtime
(Apollo Router).

Several aspects of this reference architecture
are cross-cutting in nature, including security,

traffic shaping, and observability. Security
is often handled with a defense-in-depth
or zero-trust approach, where each layer
of the stack provides security controls for
authentication, authorization, and blocking
malicious requests. Client-side traffic shaping
with rate limits, timeouts, and compression
can be implemented in the API gateway or
supergraph layer, and subgraph traffic shaping
(including deduplication) can be implemented
at the supergraph layer. Observability via Open
Telemetry is supported across the stack to
provide complete end-to-end visibility into each
request via distributed tracing along with metrics
and logs.

The following reference architecture details how Kong and Apollo technologies can be used to build,
deploy, and operate modern APIs. Included is an overview of how a GraphQL request is processed at
runtime through the different layers of the architecture.

Reference Architecture for a Modern
API Platform

Leveraging GraphQL for Next-Generation API Platforms

© Kong Inc. 16

Every layer of the modern API platform presents unique challenges for building, deploying, and
managing APIs. Kong and Apollo technologies tackle these challenges, promoting developer
efficiency and autonomy while ensuring that organizational and design best practices scale
seamlessly across multiple teams.

Developer tooling is designed to integrate into
your existing software development lifecycle
(SDLC) and CI/CD workflows. Developer portals
make API service discovery simple, and schema
registries make it easier to publish and consume
APIs at different layers of the stack. API security
and performance policies can be defined and

managed at each layer, along with observability
capabilities to understand API usage, the impact
of breaking changes, and operational concerns
like performance and monitoring. Each layer
of the stack has tools to make enabling these
capabilities easy for platform engineers.

Kong Gateway is the world’s most adopted API
gateway. It offers strong performance, scalability,
and extensibility. Compatible with various
systems, including bare metal, Kubernetes, and
other containerized platforms, the gateway
accommodates a variety of protocols and
can integrate with both traditional and newer
technologies.

Kong Gateway is designed to optimize today’s
application modernization needs through
automation across the full lifecycle of APIs and
microservices. With Kong Gateway, developers
can instantly add traffic control, security,
authentication, and transformation functionality
leveraging a wide array of out-of-the-box plugins
ensuring best practices are followed without
stifling flexibility and productivity. Kong Gateway
can also run natively on Kubernetes, with Kong
Ingress Controller.

APIOps is a process that takes the proven
principles of DevOps and GitOps and applies
them to API platform management. Kong
provides full support for APIOps automation
to ensure reliable and repeatable API delivery.
Kong Gateway configuration can be managed
using a REST-based API or a modern declarative
configuration system including drift detection.
Full and partial declarative configurations
can be stored in version control systems and
assembled, validated, and applied through CI/
CD pipelines.

Build, Deploy, and Operate APIs with a Modern API Platform

API Gateway

Leveraging GraphQL for Next-Generation API Platforms

© Kong Inc. 17

This tooling enables developers to autonomously design and develop APIs, including generating
gateway configurations from OpenAPI Specifications (OAS). Federated governance defined by the
API platform team is applied to both the individual service and the composed API, ensuring that
delivered APIs are consistent, reliable, and secure.

Leveraging GraphQL for Next-Generation API Platforms

© Kong Inc. 18

Apollo GraphOS provides everything needed to build and deploy any number of GraphQL changes per
day with streamlined multi-team collaboration powered by Apollo’s federated GraphQL architecture.
GraphOS provides a schema registry, managed build pipeline with customizable schema linting,
graph-native observability with developer decision support, and breaking change prevention to
ensure changes can be deployed with speed and safety. GraphOS includes developer tooling for app
developers (schema explorer, query builder, docs) as well as subgraph developers (30+ compatible
subgraph frameworks, schema insights, Rover CLI for dev laptop and CI/CD pipelines).

A platform team is typically responsible for
configuring the supergraph build pipelines
in Apollo GraphOS and configuring and
operating the supergraph runtime fleet for
each environment (dev, test, prod) using Apollo
Router. This enables subgraph developers to
autonomously own and contribute their slice of
the graph without the platform team becoming a
bottleneck. Graph variants are created for each
environment (dev, UAT, prod) and security is
configured to restrict who can publish to each
supergraph variant.

With the supergraph infrastructure in place,
each subgraph team can independently build

and deploy their subgraphs, and then make
them available in the supergraph by publishing
to the Apollo GraphOS Schema Registry. This is
typically done as the last step in a CD workflow
or with a post-deploy analysis job if a progressive
delivery controller is used — once an updated
subgraph is ready to accept traffic.

Once a new subgraph schema is published,
GraphOS automatically composes it into a
new supergraph schema, runs linting checks
defined by the API platform team to ensure best
practices, and if all checks pass, the router fleet
will pull a new supergraph schema via CD via a
multi-cloud Apollo Uplink endpoint.

Supergraph Developer Tooling and CI/CD Pipelines with Policy Controls

https://www.apollographql.com/docs/federation/
https://www.apollographql.com/docs/federation/building-supergraphs/supported-subgraphs
https://www.apollographql.com/docs/federation/building-supergraphs/supported-subgraphs

Leveraging GraphQL for Next-Generation API Platforms

© Kong Inc. 19

Subgraph teams can also shift left the detection
of breaking changes with GraphOS schema
checks, using developer tooling (Rover CLI) both
on the developer laptop and in the CI workflows
for each subgraph. GraphOS provides GraphQL
field usage insights that help API developers
understand which apps and app versions are
using a field, how much traffic, and the potential
impact of breaking change and which app they
need to coordinate with.

Apollo Router processes all inbound GraphQL
requests, plans and executes requests across
subgraphs, and enforces graph-native policies
for security, performance, and operational
concerns. At this point, the router fleet is
able to serve traffic and the Apollo GraphOS
provides developer documentation with updated
supergraph schema, so application teams can
immediately use new fields and types in the
GraphQL queries that apps need to power new
customer experiences.

Microservices bring many benefits, but also many disadvantages. The network is unreliable, service
discovery is hard, and there are few controls around who is accessing data from each API.

Service meshes abstract these concerns away
from developers, reducing the complexity of
service development by removing the need to
manually build these capabilities directly into
service code. This allows development teams
to concentrate on building value instead of
redundant connectivity code across languages
and projects.

Kong Mesh is an enterprise-grade service
mesh built on top of Envoy that solves these
issues with a focus on simplicity, security,
and scalability. Kong Mesh automates service
discovery, security, advanced traffic routing,
observability, and failover logic using centralized
policies. These policies are applied through
a REST-based management API or through a
kubectl-like declarative resource model.

Kong Mesh additionally supports zones, which
allow organizations to model physical network
connectivity across their environment. Platform
teams can design zones around concepts such
as Kubernetes clusters, cloud providers, regions,
data centers, or network latency boundaries.
Services within zones can communicate directly,
and cross-zone communication is handled out-
of-the box. Service meshes can be deployed
within or across zones for maximum flexibility.

Kong Mesh can be installed and managed
standalone or through Kong Konnect, and it
operates on Kubernetes or virtual machine
deployments. Meshes can be created per line of
business, team, project, or environment thanks
to Kong Mesh’s ability to create multiple isolated
service meshes within the same cluster.

Ingress traffic to a mesh is handled by an API
gateway. Kong Mesh supports many different
ingress controllers, but it works best when
paired with Kong Gateway via the Kong Ingress
Controller. All external traffic passes through the
gateway and is subject to any policies defined at
the gateway level, similar to those defined in the
edge gateway.

Microservices Management with Service Mesh

Leveraging GraphQL for Next-Generation API Platforms

© Kong Inc. 20

To help visualize how this architecture works, let’s look at how a GraphQL query request traverses the
architecture layers in some detail.

The API Request Lifecycle

Kong Gateway sits at the edge of the network to proxy all incoming traffic. In a GraphQL request, this
is typically an HTTP POST with the GraphQL query in the body of the request along with any required
headers. This example shows an Authorization header containing a JSON Web Token (JWT) and a
query to fetch information about the current user and a list of products:

Service Routing

Kong Gateway evaluates the incoming HTTP request against configured Routes and attempts to
find a match. The gateway can match routing based on a number of capabilities, including HTTP
methods, host, headers, request path, and Server Name Indication (SNI). Kong Gateway supports
requests over HTTP, TCP, and GRPC protocols.

In this example, a route is configured to match the path /graphql on the host example.com which
matches the above request.

POST /graphql HTTP/1.1
Host: example.com
Accept: application/json
Content-Type: application/json
Authorization: Bearer ...
{ "query": "{
 me {
 id
 }
 products {
 price
 name
 deals
 review {
 rating
 }
 }
 }" }

Kong API Gateway

Leveraging GraphQL for Next-Generation API Platforms

© Kong Inc. 21

Authentication / Authorization

Once the Route and Service are determined, the
request is run through all configured plugins,
starting with security. In the above GraphQL
example, JWT authentication is used. Kong
directly supports JWT and dozens of other
security and authentication technologies through
its extensive plugin ecosystem. Requests are
verified to contain valid signatures and claims,
and violating requests are immediately rejected.

Traffic Management

GraphQL adds new challenges when it comes to
traffic management. Not all requests are equal,
which makes traditional rate-limiting strategies
ineffective. Kong Gateway provides specialized
GraphQL plugins that take query complexity into
account when implementing rate limiting.

As GraphQL is an HTTP request at its core, you
can use any of Kong’s other Layer 7 plugins such
as proxy caching, request validation, configurable
upstream timeouts, and even mocking to unblock
the UI team as the subgraph service is being
built.

Kong plugins define a logical default processing
order. However, operators may dynamically build
a plugin dependency graph to define the plugin
execution order. A common example used is
allowing rate-limiting evaluation to be processed
prior to authorizing requests. Requests violating
any configured traffic management rules are
immediately rejected.

Observability

The OpenTelemetry (OTel) standard has driven
observability into the mainstream. Understanding
the request lifecycle and where time is being
spent is key to building reliable, performant APIs.

Kong Gateway and Kong Mesh both support
OTel without any additional dependencies.
Information about plugin execution, DNS
lookups, and upstream performance are
generated and propagated to any OTel protocol
(OTLP) compatible server. Along with OTel,
Kong supports many popular analytics,
monitoring, and streaming platforms including
DataDog, AppDynamics, Zipkin, Prometheus,
Kafka, and more.

Request Forwarding

Once Kong Gateway has executed all configured
plugins, it is ready to forward the request to
the upstream service. Kong Gateway supports
load-balancing capabilities to distribute requests
across a pool of instances of an upstream
service. Requests are allocated using a round-
robin algorithm by default, but Kong also
supports consistent-hashing, least-connections,
and latency. The latency algorithm uses peak
EWMA (exponentially weighted moving average),
which ensures that the balancer selects the
upstream target by lowest latency.

For our example GraphQL request, Kong Gateway
forwards the request on to the Apollo Router,
which is a high-performance supergraph runtime.

Leveraging GraphQL for Next-Generation API Platforms

© Kong Inc. 22

Apollo Router processes all inbound GraphQL requests and plans and executes requests across
subgraphs. In order to ensure performance, Apollo Router was written in Rust to ensure increased
throughput, reduced latency, and reduced variance. It also enforces graph-native policies for security,
performance, and other operational concerns, which can be configured by platform teams in YAML,
Rhai scripting, or their language of choice.

Supergraph Runtime Execution

GraphQL Query Parsing & Validation Against the
Public API Schema

As a spec-compliant GraphQL server, the router
parses and validates each GraphQL request
to ensure the query conforms to the GraphQL
schema. Apollo Router is powered by the
declaratively composed supergraph schema
that contains every type and field in your graph
and which subgraph(s) they can be fetched
from, including various federation directives
that define build and runtime policies. The full
supergraph schema may internally include
fields that are otherwise `@inaccessible` for
applications to use, and these are not included in
the public API schema that the router validates
GraphQL requests against.

Graph-Native Security and Performance Policy
Enforcement

GraphQL-native security and performance
policies are enforced early in the request
lifecycle to block malicious traffic at the edge
of your supergraph and protect the underlying
microservices from excessive load. For

example, subgraph schema directives like `@
authenticated` and `@requireScopes` enable
the Apollo Router to dynamically calculate the
required JWT claims to access all the fields in
a query and gracefully degrade the response by
removing unauthorized fields from the query
along with a suitable field-level error. Apollo
Router can enforce multiple GraphQL-native
security policies, including query depth and
height limits, contracts, and a safelist of known
queries.

Intelligent Query Planning

Apollo Router creates an optimized query
plan for each GraphQL operation (query,
mutation, subscription) that minimizes the cost,
complexity, and latency for each query, so it
can optimally fetch and join data from multiple
subgraph APIs into a single unified response for
apps to consume.

With Apollo Federation 2, fields can be
denormalized across subgraphs for improved
performance using the `@shareable` subgraph
directive to relax the default single source of

https://www.apollographql.com/docs/federation/federated-types/federated-directives

Leveraging GraphQL for Next-Generation API Platforms

© Kong Inc. 23

Query Execution and API-Side Joins

The router then executes the query plan in parallel where possible and in sequence when API-side
joins require data to be fetched from multiple subgraphs in sequence. To support API-side joins
of GraphQL data (similar to how tables are joined in a database) each of the over 30 subgraph
frameworks provide the ability to fetch additional data for a GraphQL entity using the available `@
key` fields defined in the subgraph schemas.

The router can then satisfy the client query by orchestrating the subgraph API calls using both the
standard GraphQL query, mutation, and subscription fields a subgraph provides, along with the ability
to fetch additional entity fields to process API-side joins. The final result is then flattened into the
requested query shape and returned to the client.

truth. Multiple subgraphs can provide the same root query fields, and subgraphs can `@override` a
field to migrate it from one subgraph to another. When clients need to defer the slow part of a query,
often due to a slow underlying REST API, they can specify the `@defer` directive in a query so the rest
of the query can be returned immediately for more responsive UX.

Apollo Router’s query planner is able to take all of the supergraph schema and directives into
consideration and generate an optimal query plan. This minimizes the number of subgraph API calls
and adheres to the declarative policies defined in the subgraph schemas and composed into the
supergraph schema that powers the router.

https://www.apollographql.com/docs/federation/building-supergraphs/supported-subgraphs/
https://www.apollographql.com/docs/federation/building-supergraphs/supported-subgraphs/
https://www.apollographql.com/docs/federation/subgraph-spec/#resolving-entity-fields-with-query_entities

Leveraging GraphQL for Next-Generation API Platforms

© Kong Inc. 24

Supergraph Observability

Graph-native telemetry is emitted by the router
during request execution, so Apollo GraphOS can
power field usage insights and schema checks
that assess the impact of potentially breaking
changes. This includes query shape, field usage,
and optionally select headers — but not the query
response or Authorization header.

Open telemetry tracing and metrics are also
natively supported by Apollo Routerd to support
APM use cases for performance, monitoring,
and alerting. Built-in support for Datadog,
Jaeger, Open Telemetry Collector, Zipkin, and
Prometheus is also included — along with
options for sampling, limits, and custom
attributes/resources.

Health checks, commonly used in Kubernetes
deployments, are also provided to ensure
each Apollo Router instance is ready before
Kubernetes sends traffic to that instance.

Supergraph Runtime Extensibility

Apollo Router provides a well-defined
extensibility model to hook into the relevant
portions of the API request lifecycle, with full
access to the GraphQL query and supergraph
schema. Rhai scripting, similar to Lua scripting
in NGINX and Envoy, enables lightweight in-
memory manipulation of headers, cookies,
and request context. Co-processors for Apollo
Router allow an HTTP sidecar, written in any
programming language, to hook into the request
lifecycle to support more advanced and bespoke
integrations.

Domain-Driven Microservices

Apollo Router makes requests to domain
services that live at the microservice layer. At
this stage, the subgraph service has transformed
the original GraphQL request into a domain
service-specific request, which may mean REST,
gRPC, or even direct database queries.

API Gateway at the Mesh Edge

These requests pass through Kong Gateway as
either	Layer	4	or	Layer	7	traffic	at	the	mesh	edge.	
As	before,	Kong’s	flexible	routing	engine	checks	
the	incoming	requests	for	matching	definitions,	
and	any	configured	plugins	are	executed	before	the	
request is forwarded to the upstream destination.

Service Discovery / Inter-Service Connectivity

The upstream domain service may require
coordination among multiple microservices or
database	objects	to	completely	fulfill	the	request.	
Keeping track of a service’s dependencies is hard
in a microservices world, but it can be solved
using Service Discovery. Kong Mesh ships with
a DNS resolver to provide service naming — a
mapping of hostname to virtual IPs of services
registered in Kong Mesh. This allows services to
communicate using simple DNS names, greatly
reducing	application-level	code	and	configuration	
complexity.

Zero-Trust Security

Instead of relying on traditional security methods
that grant access based on network location
(e.g., inside or outside of a corporate network),
zero-trust security operates on the assumption
that threats could be anywhere, and as such, no
device or service should be automatically trusted,
irrespective of where they connect from.

In Kong Mesh, zero-trust security is inherently
integrated	by	using	mTLS	to	encrypt	the	traffic	
between services and authenticate the services to
each other. By doing so, even if malicious entities
gain access to the network, they cannot readily
interpret	or	tamper	with	the	traffic,	nor	can	they	
pretend to be a valid service without the proper
credentials.

Furthermore,	the	mesh	can	provide	fine-
grained control over which services are allowed
to	communicate	with	each	other	via	Traffic	
Permissions, further tightening the security stance.

Leveraging GraphQL for Next-Generation API Platforms

© Kong Inc. 25

Traffic Management and Observability

Kong Mesh handles a variety of traffic reliability features by applying declarative policies to data
plane proxies. Common traffic policies include health checks, retries, circuit breaking, and more.
Observability details are tracked at each stage of the mesh, forwarding details to collection services
and configured via policies applied to the data plane.

Once the request is fulfilled, a response is returned via the gateway to the subgraph where it is
assembled into the full response for the original GraphQL request to be returned to the client.

Leveraging GraphQL for Next-Generation API Platforms

© Kong Inc. 26

Kong and Apollo technologies are complementary, and when used in conjunction, they provide
everything you need to power a modern API platform. Both companies have built best-in-class SaaS
solutions that power the unified API platform.

A Modern API Platform

Kong Konnect provides a unified API management platform designed to decrease operational
complexity and enable scaled federated governance across multiple teams. Kong Konnect enables
the management of Kong Gateway, Kong Ingress Controller, and Kong Mesh, offering a single
management interface across all Kong runtime technologies.

Kong Konnect

Kong Konnect is designed to deliver
comprehensive API lifecycle management,
ensuring adaptability across various clouds,
teams, protocols, and architectural designs. It
encompasses API configuration, API portals,
service catalogs, and deep API analytics
functionalities.

Kong Konnect empowers organizations to build
and operate the API gateway and domain-driven
microservice layers:

1. Deliver a global API registry — Kong

Konnect’s Service Hub ensures every service,
regardless of technology, is cataloged and
searchable, creating a single source of truth
across the organization.

2. Deliver comprehensive API portals —
Developers can navigate APIs, obtain
detailed reference documentation,
experiment with endpoints, and register
applications to consume APIs — all through a
single, customizable API portal.

3. Real-time monitoring and analytics — Kong
Konnect provides instantaneous access to
vital statistics, monitoring tools, and pattern
recognition, allowing businesses to gauge
the performance of their APIs and gateways
in real time.

4. Employ modern operational methods
— Kong Konnect enables a Kubernetes-
centric operational process with the
Kong Ingress Controller integration.
Declarative configuration and Kong Konnect
management APIs enable a DevOps-ready,
config-driven API management layer.

5. Leverage an ecosystem of plugins — Kong
Konnect is enabled with an extensive catalog
of both community and enterprise plugins.
These plugins introduce vital functionalities
such as authentication, authorization, rate
limiting, and caching — saving critical API
developer time and resources.

Leveraging GraphQL for Next-Generation API Platforms

© Kong Inc. 27

Leveraging GraphQL for Next-Generation API Platforms

© Kong Inc. 28

Apollo GraphOS provides the architecture, infrastructure, and workflows to ship a self-service
GraphQL platform. This platform provides an intuitive service access layer for client teams, enabling
them to ship features faster and deliver better application performance — regardless of how many
underlying services they use.

In summary, Apollo GraphOS is engineered to meet the challenges of modern application
development head-on, offering scalability, speed, and security while supporting collaborative and
autonomous team workflows.

Apollo GraphOS

GraphOS enables organizations to build and
operate the supergraph layer on top of existing
APIs using:

1. Modular graph development — Monoliths
cause bottlenecks that slow down app
development at every scale. With GraphOS,
you build your graph on a modular, scalable
architecture with subgraphs that link to
each other.

2. Fast,	unified	query	execution	—	GraphOS	links	
your subgraphs together into the supergraph
with a blazing-fast, cloud-native runtime.
Access all underlying capabilities with a single
GraphQL query and get automatic support for
advanced GraphQL features like @defer.

3. Safe and rapid graph evolution — Modern apps
change by the hour, and your API architecture
needs to do the same. GraphOS gives you the
tools to develop schemas collaboratively with

a single source of truth, deliver changes safely
with graph CI/CD, and improve performance
with	field	and	operation-level	observability.

4. Graph-native security, performance, and
governance — GraphOS supports build and
runtime policies that can be defined by the
appropriate team and enforced by GraphOS
at build-time in the GraphOS CI/CD pipeline
and at runtime by Apollo Router. Distributed
policy ownership and centralized policy
enforcement points are key to scaling your
graph efficiently, so each team can own their
slice of the graph and deploy autonomously
with speed and safety.

5. Advanced runtime options for enterprises
— To meet the most demanding enterprise
requirements, GraphOS offers a flexible
runtime deployment model to give
enterprise architecture and operations
teams maximum control.

Leveraging GraphQL for Next-Generation API Platforms

© Kong Inc. 29

This paper has outlined a robust approach for end-to-end API and GraphQL lifecycle management.
Combining Kong's strengths in API management with Apollo's expertise in GraphQL, the reference
architecture outlined in this paper provides organizations with a well-rounded, effective solution. The
practical guidance and best practices laid out in this paper set a clear standard for what effective API
and GraphQL management should look like.

Conclusion

Leveraging GraphQL for Next-Generation API Platforms

© Kong Inc. 30

Konghq.com

Kong Inc.
contact@konghq.com

77 Geary Street, Suite 630
San Francisco, CA 94108
USA

http://Konghq.com?utm_medium=content&utm_source=kong&utm_campaign=ebook-api-best-practices
mailto:contact%40konghq.com?subject=

